

Intel Confidential i Intel® Extreme Tuning Utility

BIOS Interface Specification

Rev. 0.51 - June 5, 2012

Intel® Extreme Tuning Utility, Version 3.2

BIOS Interface Specification
Revision 0.8

Last Update: Sept 17, 2012

Intel Confidential ii Intel® Extreme Tuning Utility

BIOS Interface Specification

Rev. 0.51 - June 5, 2012

Legal Notices and Disclaimers

INTEL CORPORATION MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. INTEL CORPORATION ASSUMES NO RESPONSIBILITY FOR ANY ERRORS THAT MAY APPEAR IN

THIS DOCUMENT. INTEL CORPORATION MAKES NO COMMITMENT TO UPDATE NOR TO KEEP CURRENT THE

INFORMATION CONTAINED IN THIS DOCUMENT.

THIS SPECIFICATION IS COPYRIGHTED BY AND SHALL REMAIN THE PROPERTY OF INTEL CORPORATION. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY INTELLECTUAL PROPERTY RIGHTS IS

GRANTED HEREIN.

INTEL DISCLAIMS ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY

RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. INTEL DOES NOT

WARRANT OR REPRESENT THAT SUCH IMPLEMENTATIONS WILL NOT INFRINGE SUCH RIGHTS.

NO PART OF THIS DOCUMENT MAY BE COPIED OR REPRODUCED IN ANY FORM OR BY ANY MEANS WITHOUT

PRIOR WRITTEN CONSENT OF INTEL CORPORATION.

INTEL CORPORATION RETAINS THE RIGHT TO MAKE CHANGES TO THESE SPECIFICATIONS AT ANY TIME,

WITHOUT NOTICE.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement provided with
the software, or in the case of software delivered to the government, in accordance with the software license
agreement as defined in FAR 52.227-7013.

Intel and the Intel logo are trademarks of Intel Corporation and its subsidiaries around the world.

* Other brands and names may be claimed as the property of others.

Intel Confidential iii Intel® Extreme Tuning Utility

BIOS Interface Specification

Rev. 0.51 - June 5, 2012

Revision History

Revision Date Reason for Changes

0.79 9/22/2011 Intel® Extreme Tuning Utility 3.2 BIOS Specification ported from 3.0 BIOS
interface spec, and updated to include Haswell platform controls.

0.80 9/29/2011 Incorporated document feedback.

0.81 10/31/2011 Pulled forward IVB configurable TDP enable change.

Updated dynamic control mode documentation to reflect change that all but specific
controls are allowed to be labeled with dynamic control mode.

0.45 3/9/2012 **NOTE: Down-rev’d specification based on current status**

0.46 3/20/2012 Added recommendation for BIOS vendors to provide a mechanism for disabling
cTDP.

0.5 5/31/2012 Inserted several Haswell generation controls. Removed PEG/DMI ratio – merged
with Reference Clock Ratio control.

0.51 6/5/2012 Added PEG/DMI ratio as a separate control.

0.8 9/17/2012 Added IOA/IOD voltages.

Updates to some control display value units.

Added 2’s complement support for negative display values reported by ACPI tables.

Intel Confidential iv Intel® Extreme Tuning Utility

BIOS Interface Specification

Rev. 0.51 - June 5, 2012

Table of Contents

1 INTRODUCTION ... 1

1.1 PURPOSE OF THIS DOCUMENT ... 1

1.2 DOCUMENT SCOPE ... 1

1.3 ASSUMPTIONS ... 1

1.4 SUPPORTED PLATFORMS .. 1

1.5 TERMINOLOGY AND ACRONYMS ... 1

1.6 RELATED DOCUMENTS ... 2

2 BIOS INTERFACE OVERVIEW ... 3

2.1 KEY CONCEPTS ... 3

2.1.1 XTU ACPI DEVICE ... 3

2.1.2 XTU SMI HANDLER ... 4

2.2 CALL SEQUENCE ... 5

3 INTERFACE DEFINITIONS .. 6

3.1 ACPI DEVICE INTERFACE ... 6

3.1.1 DEVICE DESCRIPTION ... 6

3.1.2 OBJECT OVERVIEW ... 6

3.1.3 GENERIC OBJECTS ... 7

3.1.3.1 Interface Version (IVER) ... 7

3.1.4 CONTROL DETAIL OBJECTS .. 7

3.1.4.1 Get Available Controls (GACI) ... 7

3.1.4.2 Discrete Supported Values (GDSV) .. 12

3.1.4.3 Get SMI Command Value (GSCV) ... 14

3.1.4.1 Get XMP Display Values (GXDV) ... 14

3.1.5 RUN-TIME CONTROL OBJECTS.. 16

3.1.5.1 Control Device Read (CDRD) ... 16

3.1.5.2 Control Device Write (CDWR) ... 17

3.1.6 MONITOR-ONLY OBJECTS ... 19

3.1.6.1 Temperature Sensor Data Dump (TSDD) .. 19

3.1.6.2 Voltage Sensor Data Dump (VSDD) ... 20

3.1.6.3 Fan Sensor Data Dump (FSDD) .. 21

3.1.6.4 Sensor Data Sampling Period (SDSP) ... 22

3.1.7 EXAMPLE IMPLEMENTATION .. 23

3.2 WATCHDOG TIMER .. 28

3.3 SW SMI REAL-TIME COMMUNICATIONS INTERFACE .. 29

3.3.1 OVERVIEW ... 29

3.3.2 BIOS SETTINGS STRUCTURE... 29

3.3.3 FUNCTIONS .. 30

Intel Confidential v Intel® Extreme Tuning Utility

BIOS Interface Specification

Rev. 0.51 - June 5, 2012

3.3.3.1 Read BIOS Settings ... 30

3.3.3.2 Write BIOS Settings .. 30

3.3.4 RETURN VALUES ... 30

3.3.4.1 Error Codes .. 31

3.3.4.2 Warning Codes ... 31

4 CONTROL IMPLEMENTATION GUIDANCE .. 32

4.1 MEMORY CLOCK MULTIPLIER ... 32

4.2 FIVR VOLTAGE CONTROLS .. 32

4.3 PEG/DMI RATIO .. 33

4.4 FILTER PLL FREQUENCY .. 33

4.5 OC MAILBOX ENABLE/DISABLE TOGGLE CONTROLS .. 33

APPENDIX A - ENUMERATIONS .. 34

Intel Confidential vi Intel® Extreme Tuning Utility

BIOS Interface Specification

Rev. 0.51 - June 5, 2012

List of Figures

Figure 1: OS-to-BIOS Communications.. 4

List of Tables

Table 1: Definition of Acronyms Used .. 2

Table 2: Related Documentation ... 2

Table 3: ACPI Device Identification ... 6

Table 4: ACPI Device Object Overview ... 7

Table 5: GACI Return Value Definition .. 8

Table 6: ControlIdData Structure Definition ... 11

Table 7: Controls that Do Not Support Dynamic Control Mode ... 12

Table 8: GDSV Argument Definition .. 13

Table 9: GACI Return Value Definition .. 13

Table 10: DiscreteValueData Structure Definition .. 14

Table 11: GXDV Argument Definition ... 15

Table 12: GXDV Return Value Definition .. 15

Table 13: XmpDisplayValue Structure Definition .. 16

Table 14: CDRD Argument Definition ... 17

Table 15: CDRD Return Value Definition .. 17

Table 16: Control Ids with Runtime Support Built-In ... 18

Table 17: CDWR Argument Definition ... 18

Table 18: TSDD Package Parameter Definitions .. 20

Table 19: VSDD Package Parameter Definitions .. 21

Table 20: FSDD Package Parameter Definitions ... 22

Table 21: SDSP Result Parameter Definitions .. 22

Table 22: BIOS Settings Data Structure .. 29

Table 23: BIOS Setting Entry .. 29

Table 24: Read BIOS Settings Command, Register Setup .. 30

Table 25: Write BIOS Settings Command, Register Setup ... 30

Table 26: BIOS Settings Command Error Codes .. 31

Table 27: BIOS Settings Command Warning Codes ... 31

Table 28: OC Mailbox Enable/Disable Toggle Controls ... 33

Table 29: Usage Sorted Control ID Enumerations .. 34

Table 30: Numerically Sorted Control ID Enumerations .. 37

Table 31: Temperature (TSDD) Usage enumeration ... 39

Intel Confidential vii Intel® Extreme Tuning Utility

BIOS Interface Specification

Rev. 0.51 - June 5, 2012

Table 32: Voltage (VSDD) Usage enumeration .. 40

Table 33: Fan (FSDD) Usage enumeration ... 41

Intel Confidential 1 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

1 Introduction

1.1 Purpose of this Document

The purpose of this document is to specify the BIOS interfaces necessary for implementation to support the Extreme
Tuning Utility (XTU) application. It includes all the information necessary for someone to implement and use these
interfaces. It will stand on its own and not be dependent on other documents to describe how to provide the BIOS
interfaces.

1.2 Document Scope

This BIOS Interface Specification provides information regarding the programming model that is used for this
module, any dependencies that exist within this module, and complete descriptions of the interfaces that are
provided by this module. Let it be clear that the document provides only the interface, not the design or
implementation of those interfaces.

1.3 Assumptions

Throughout this document technical terms regarding BYTEs, WORDs, DWORDs, and QWORDs are used. All
references should be assumed to be little-endian. Also, BYTEs should be assumed to be 8 bits and WORDSs 16
bits.

1.4 Supported Platforms

The Intel® Extreme Tuning Utility supports a specific set of Intel microprocessor based platforms. XTU supports
all Sandy Bridge & Ivy Bridge based processors. This includes both Mobile and Desktop processors. It also
includes processors with or without integrated graphics.

1.5 Terminology and Acronyms

Acronym Description

ACPI Advanced Configuration and Power Interface

ASL ACPI Source Language

BCLK Base Clock (aka Reference Clock) – The clock used as a source for many of the clock domains on
the CPU and PCH

BIOS Basic Input/Output System – This is the firmware responsible to boot a PC

CPU Central Processing Unit – The main processor for a platform

Intel Confidential 2 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

Acronym Description

EAX Register of the x86 processor

EBX Register of the x86 processor

ECX Register of the x86 processor

EDX Register of the x86 processor

IA Intel Architecture

IO Input/Output

OS Operating System

PCH Platform Controller Hub

PCMCIA Personal Computer Memory Card International Association – aka PC Card

PLL Phased Locked Loop

RPM Rotations Per Minute

SMI System Management Interrupt

SPD Serial Presence Detect – Non-volatile memory that is used on memory sticks to describe the
characteristics of the memory

SW Software

TDP Total Design Power – The maximum power that a processor is designed to use

VR Voltage Regulator – A circuit used to maintain a specific voltage in order to power another circuit

WDT Watchdog Timer – A timer used to recover from a halted or hung platform state

XMP Intel® Extreme Memory Profiles – Pre-defined Memory Overclocking Profiles defined as part of
the SPD

XTU Intel® Extreme Tuning Utility – Overclocking software provided by Intel

Table 1: Definition of Acronyms Used

1.6 Related Documents

Document Name Revision Doc Location

Advanced Configuration and Power Interface 3.0b http://www.acpi.info/

Platform Performance Tuning Guide SNB

IVB

HSW

VIP #29037

VIP #TBD

VIP #TBD

Extreme Memory Profile specification 1.3 VIP #TBD

Table 2: Related Documentation

Intel Confidential 3 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

2 BIOS Interface Overview
The BIOS interfaces in the Extreme Tuning Utility serve two purposes for the XTU application. The first usage of
this interface is to persist BIOS settings from the OS by providing mechanisms for reading from and writing to
BIOS setup. The second purpose of the BIOS interface is to provide a mechanism that XTU can use to manipulate
runtime, board-specific devices.

The XTU BIOS interfaces do not replace the need for the BIOS to implement core overclocking functionality. In
order for the interfaces that are described within this document to function correctly, it is necessary for the BIOS to
implement support for overclocking. This includes reference clock (or bclk) control, voltage control, manual
memory timing manipulation, and more. Descriptions specific to each platform regarding implementation of core
overclocking functionality is out of the scope of this document. Please refer to the appropriate Platform
Performance Tuning Guide for direction in this area.

2.1 Key Concepts

There are two key concepts that should be understood by the BIOS engineer when implementing the XTU BIOS
interface. The first of these concepts is the XTU ACPI Device and the purpose of this device. The XTU ACPI
Device is generated by ASL that is written by the BIOS developer. The main purpose of this device is to provide a
mechanism that can be used for passing platform specific information from the BIOS to the OS. It can optionally
provide support for reading from and writing to platform specific hardware in runtime. The second main concept
that is important to understand is the mechanism that XTU uses in order to persist data across reboots. In order
persist BIOS setup information across reboots XTU passes updated information to the BIOS via an SMI. The
associated SMI handler must interpret the data that is passed to the BIOS and store it in flash or another non-volatile
medium where it can be integrated into future boots.

2.1.1 XTU ACPI Device

This device serves two main purposes. The first purpose is to pass the complete list of tuning controls (See
ENUMERATIONS) which are supported by the platform along with the settings which they support to the XTU
software. This listing of controls and settings allows XTU the ability to expose settings to the user which require a
reboot. It also allows the XTU software the ability to expose platform specific hardware.

The second purpose of the XTU ACPI device is to allow for runtime control and monitoring of platform specific
devices. The Run-Time Control Objects and Monitor-Only Objects described later in this document allow for both
runtime control and monitoring style devices to be implemented.

Intel Confidential 4 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

2.1.2 XTU SMI Handler

The SMI Handler must be developed to allow for persisting data to the BIOS from the OS at run-time. A software
SMI interface is used to pass control to the BIOS from the application. The SW command handler data is a piece of
data that is sent to the application through the previously mentioned ACPI methods. Using this software System
Management Interrupt (SMI) port and command data control will be passed to the BIOS for handling of some
functionality. This functionality is for reading and writing BIOS setup data. This functionality is represented in
Figure 2.

OS BIOS Driver

SMM BIOS Handler

Store Non-Volatile

BIOS Data

Figure 1: OS-to-BIOS Communications

Intel Confidential 5 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

2.2 Call Sequence

The following flow chart outlines the calls that will be made to BIOS by the XTU software. All calls referenced in
this chart are defined in the INTERFACE DEFINITIONS section later in this document.

XTU Software

Initializes at OS Load

Call the GACI

Method

Does XTU ACPI

Device exist?

Does this Control ID

require discrete

controls?Call the GDSV

Method for this

Control ID and

process the data

Yes

Stop BIOS

Processing
No

Are there any

more Control

IDs?

Process the next

Control ID

Yes Process the GACI

data for the current

Control ID
No

Attempt to read

both XMP profiles

via GXSV method

No

Read the SMI

Command Value via

GSCV method

Issue an SMI Read to

collect current BIOS

state

Read the monitor

sampling rate via

the SDSP method

Read monitoring

values via TSDD,

VSDD, and FSDD

At the sampling period

Read and Write via

CDRD and CDWR as

necessary

Intel Confidential 6 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

3 Interface Definitions

3.1 ACPI Device Interface

The custom XTU ACPI Device is the foundation of the new XTU BIOS Interface. This ACPI device definition is
required in order to allow XTU to communicate to BIOS for the purpose of either persistence of setting values
across reboots or control of run-time platform specific devices. The following sections will describe each of the
required and optional structures, their purpose, and detailed descriptions.

All examples in the following section are referring to ASL code. For details on syntax and ASL conventions please
refer to the Advanced Configuration and Power Interface Specification available at http://www.acpi.info.

3.1.1 Device Description

The following table provides details of the generic ACPI device. This device is what the XTU ACPI driver will
register against and must be present in order to support either ACPI Control or Monitor-only methods and objects.

Identification Method Value

_HID INT3394

_CID PNP0C02

Table 3: ACPI Device Identification

This device can be implemented under any scope of the platform ACPI's namespace, however, it is recommended to
be implemented within the _SB scope.

Specifying the _CID ensures that the ACPI device does not show up in the Windows Device Manager as an
"Unknown Device" with a yellow bang.

3.1.2 Object Overview

The following table provides an overview of the objects which are described in the upcoming sections. This
provides a clear understanding of the various supported names and methods which make up the XTU ACPI device.

ACPI
Object

Object Name Type Description

IVER Version Name This object defines the version number of the interface.

GACI Get Available Controls Method
This object defines the Control IDs supported by the platform
and includes the static information associated with those
controls.

GDSV
Get Discrete Supported

Values
Method

This object is used to describe a discrete set of display values
when the control is unable to be described as a continuous set
of values.

Intel Confidential 7 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

ACPI
Object

Object Name Type Description

GSCV
Get SMI Command

Value
Name

This object is used to describe the command that must be sent
to the software SMI.

GXDV
Get XMP Display

Values
Method

This object is used to retrieve the Control IDs and display
values associated with a requested XMP Profile.

CDRD Control Device Read Method
This object is used to read the current state of a platform
specific runtime control.

CDWR Control Device Write Method
This object is used to write the current state of a platform
specific runtime control.

TSDD
Temperature Sensor

Device Dump
Method

This object is used to get the current state of all temperature
sensors on the system.

VSDD
Voltage Sensor Device

Dump
Method

This object is used to get the current state of all voltage sensors
on the system.

FSDD
Fan Sensor Device

Dump
Method

This object is used to get the current state of all fan sensors on
the system.

SDSP
Sensor Data Sampling

Period
Method

This object is used to get the sampling period that should be
used for all monitors.

Table 4: ACPI Device Object Overview

3.1.3 Generic Objects

The following objects provide the XTU software with standard information that describes the ACPI device interface.

3.1.3.1 Interface Version (IVER)

The IVER object evaluates to an integer that represents the version of this interface. It is a required object
to be implemented on this interface.

The upper two bytes indicate the major version and the lower two bytes indicate the minor version.

Name (IVER, 0x00010000) //Version 1.0

3.1.4 Control Detail Objects

The ACPI Control Detail Objects provide XTU with a variety of information about the platform. Specifically they
provide information regarding which Control IDs are supported in runtime, which are persisted to the BIOS, and
what settings are available for those controls on this platform. The list of supported Control IDs can be found in
TABLE 30: NUMERICALLY SORTED CONTROL ID ENUMERATIONS and TABLE 31: TEMPERATURE (TSDD) USAGE

ENUMERATION

3.1.4.1 Get Available Controls (GACI)

The GACI object is a control detail object which is implemented by the BIOS that allows for retrieving the
entire list of Control IDs supported by the BIOS (see ENUMERATIONS). Any Control ID that is present in
the list is assumed to be a Control ID that is handled by the SW SMI REAL-TIME COMMUNICATIONS

Intel Confidential 8 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

INTERFACE read and write routines (section 3.3). The XTU Software will then attempt to use the ACPI
RUN-TIME CONTROL OBJECTS (section 3.1.5) in order to read whether each Control ID is supported via
these interfaces. The GACI object is responsible to communicate the static information for all Controls
which are able to be manipulated on the platform.

Syntax for Signature
Method(GACI, 0, NotSerialized, 0, PkgObj)

Description

The purpose of this method is to retrieve basic data about controls that are supported by the BIOS.

Arguments
No input is required for this method.

Result

A package object is returned with the following definition:

Name (RETV, Package()

{ // Field Name // Field Type

 ErrorCode // DWORD

 DataBuffer // ControlIdData[]

})

 The resultant buffer is defined as an array of packed ControlIdData C-structs.

struct ControlIdData

{

 DWORD ControlId

 WORD NumberOfValues

 BYTE Precision

 BYTE Flags

 DWORD DefaultDataValue

 DWORD MinDataValue

DWORD MaxDataValue

 DWORD MinDisplayValue

 DWORD MaxDisplayValue

 }

 Result Parameter Definitions

Field Name Definition

ErrorCode

Defined as:

 Success == 0

 Unexpected Error == 0xFFFFFFFF

Any value that is returned which is not equal to 0 is considered a failure.
In the failure case, the buffer is defined as indeterminate and the caller
should not use that data.

DataBuffer

The buffer returned as part of the GACI call is an array of ControlIdData
C-structs. It is valid to return an empty buffer. This would imply that
only monitoring features are supported by the platform.

Table 5: GACI Return Value Definition

Intel Confidential 9 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

Field Name Definition

ControlId
This field describes a Control ID that is supported by the BIOS via the
SW SMI REAL-TIME COMMUNICATIONS INTERFACE.

NumberOfValues

This field is used for two purposes. First if the control requires a value set
of discrete numbers as opposed to a set of continuous numbers then this
field should be set to FFFFFFFh. This tells the XTU software to use the
DISCRETE SUPPORTED VALUES (GDSV) method in order to retrieve the
value set for this Control ID.

If the Control ID can be described by a continuous set of values then this
parameter describes the number of supported values that are contained in
that data set. This allows the caller to determine the step size for both the
Data Values and the Display Values in order to generate a complete data
set as well as a complete set of options to display to the end-user.

Precision

This field is used to allow the BIOS to represent non-whole numbers as
fixed-point values. The precision specified will be applied to all Display
Values in the data set of the associated Control ID. The precision field
will be used for both continuous and discrete value sets. See the
following examples:

DisplayValue: 125
Precision: 2
XTU UI: 1.25

DisplayValue: 40
Precision: 0
XTU UI: 40

DisplayValue: 400
Precision: 1
XTU UI: 40.0

Flags

Flag Bit Definitions:

Bit[0] 1 – Real Time ACPI Interface Support

 0 – No Real Time ACPI Interface Support

If bit 0 is a 1 then the RUN-TIME CONTROL

OBJECTS are implemented for this Control ID.

Bit[1] 1 – Supports dynamic control mode

0 – Does not support dynamic control mode

Special rules apply to Dynamic Control Mode
Support.

Bit[2:7] Reserved – Should be 00h

DefaultDataValue

The value of the data associated with the default setting for this Control
ID. This data value must be contained within the value set described by
the Min/Max Data Values or by the DISCRETE SUPPORTED VALUES

(GDSV) data values.

Intel Confidential 10 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

Field Name Definition

MinDataValue

The value of the data associated with the MinDisplayValue. This data
will be sent to both the SW SMI REAL-TIME COMMUNICATIONS

INTERFACE and the RUN-TIME CONTROL OBJECTS if they are supported
when attempting to apply the minimum display value.

This value is not used if the DISCRETE SUPPORTED VALUES (GDSV)

method is implemented for this Control ID.

MaxDataValue

The value of the data associated with the MaxDisplayValue. This data
will be sent to both the SW SMI REAL-TIME COMMUNICATIONS

INTERFACE and the RUN-TIME CONTROL OBJECTS if they are supported
when attempting to apply the maximum display value.

This value is not used if the DISCRETE SUPPORTED VALUES (GDSV)
method is implemented for this Control ID.

MinDisplayValue

The minimum value that is to be used for display purposes by the XTU
user interface. This field is handled as a 2’s complement to represent a
negative value where necessary.

This value is ignored if the DISCRETE SUPPORTED VALUES (GDSV)
method is implemented for this Control ID.

NOTE:

This value can also be used for the non-standard data type definitions
outlined below (see ENUMERATIONS):

Enable/Disable Control IDs – In this case the MinDisplayValue
should be 0. This represents the Disable state.

XMP Profiles – In this case the MinDisplayValue should be 0.
A DisplayValue of 0 represents Default Profile. A DisplayValue
of 1 represents the Custom Profile. A DisplayValue of 2
represents Profile 1. A Display Value of 3 represents Profile 2.
All other values are unsupported.

MaxDisplayValue

The maximum value that is to be used for display purposes by the XTU
user interface. This field is handled as a 2’s complement to represent a
negative value where necessary.

This value is ignored if the DISCRETE SUPPORTED VALUES (GDSV)
method is implemented for this Control ID.

NOTE:

This value can also be used for the non-standard data type definitions
outlined below (see ENUMERATIONS):

Enable/Disable Control IDs – In this case the MinDisplayValue
should be 0. This represents the Disable state.

XMP Profiles – In this case the MinDisplayValue should be 0.
A DisplayValue of 0 represents Default Profile. A DisplayValue
of 1 represents the Custom Profile. A DisplayValue of 2

Intel Confidential 11 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

Field Name Definition

represents Profile 1. A Display Value of 3 represents Profile 2.
All other values are unsupported.

Table 6: ControlIdData Structure Definition

3.1.4.1.1 Dynamic Control Mode Support

Dynamic control mode, when enabled, exposes a special supported value that is displayed as “Auto” in the
XTU user interface. An example of a control that could support dynamic control mode would be CPU Core
Voltage, where BIOSes will usually the display dynamic control mode setting as “Default” or “Automatic”
via the BIOS set-up screens; while set to this value, the voltage regulators would automatically adjust the
voltage in real-time based on load, thermal margins, and capabilities.

To indicate a control supports dynamic control mode, the corresponding flag must be set in the
ControlIdData flags field for the control in the GET AVAILABLE CONTROLS (GACI) ACPI method. A
control with this flag set to enabled will automatically assume that a supported value exists with a data
value of 0xFFFFFFFE that will be displayed as “Auto” in the XTU user interface. A BIOS must not

include a setting with a data value of 0xFFFFFFFE when the dynamic control mode support flag is

enabled; that setting will be replaced with the “Auto” setting by the XTU application framework.

When a control has the dynamic control mode support flag enabled, all real-time devices, including those
defined via ACPI, will be ignored. To summarize: controls supporting dynamic control mode do not

support real-time / run-time changes.

The following table shows a listing of the control IDs that do not support dynamic control mode; the

dynamic control mode support flag will be ignored on any control that is listed on the following table.

Controls that Do Not Support Dynamic Control Mode

Control ID Definition

01h Host Clock Frequency

1Dh 1-Active Core Ratio Limit

1Eh 2-Active Core Ratio Limit

1Fh 3-Active Core Ratio Limit

20h 4-Active Core Ratio Limit

2Ah 5-Active Core Ratio Limit

2Bh 6-Active Core Ratio Limit

00h Max Non-Turbo Processor Multiplier

3Bh Graphics Turbo Ratio Limit

49h Memory Clock Multiplier

13h DDR Multiplier

45h Reference Clock Ratio

Intel Confidential 12 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

3Fh Runtime Turbo Override

40h XMP Profile Selection

29h Enhanced Intel Speedstep Technology Enable/Disable

47h Runtime Turbo Override Enable

37h Internal Graphics Core Total Design Power Enable

34h IA Core Total Design Power Enable

1Ah Turbo Boost Technology Enable

31h Short Window Package Total Design Power Enable

48h Configurable TDP Enable

50h Overclocking Enable

4Ah Filter PLL Frequency

4Bh Dynamic SVID Control

4Ch Ring Ratio

4Eh Ring Voltage Mode

52h Graphics Core Voltage Mode

54h Package Current Limit

56h FIVR Faults

57h FIVR Efficiency Management

58h IA Core Voltage Mode

5Ah PEG/DMI Ratio

Table 7: Controls that Do Not Support Dynamic Control Mode

3.1.4.2 Discrete Supported Values (GDSV)

The GDSV object is a control detail object which retrieves a specified Control ID’s (see ENUMERATIONS)
discrete set of BIOS setting values, display values, and an associated precision for the entire list. This
mechanism is only necessary if either the display values or the setting values are non-continuous. This
method also returns the precision of the display values.

Syntax for Signature
Method(GDSV, 1, NotSerialized, 0, PkgObj, IntObj)

Description

The purpose of this method is to retrieve the complete set of discrete values supported for the requested
Control ID on this platform.

Arguments

The single input to the GDSV method is the Control ID to be queried.

Intel Confidential 13 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

Parameter Definitions

Field Name Definition

ControlID

(Arg0)
This is a value which represents a specified control (see ENUMERATIONS).

Table 8: GDSV Argument Definition

Result

A package object is returned with the following definition:

Name (RETV, Package()

{ // Field Name // Field Type

 ErrorCode // DWORD

 DataBuffer // DiscreteValueData[]

})

 The resultant buffer is defined as an array of packed DiscreteValueData C-structs.

struct DiscreteValueData

{

 DWORD DataValue

 DWORD DisplayValue

 }

 Result Parameter Definitions

Field Name Definition

ErrorCode

Defined as:

 Success == 0

 Only Continuous Values Supported == 1

 Unexpected Error == 0xFFFFFFFF

Any value that is returned which is not equal to 0 is considered a failure.
A value of 1 describes a Control ID whose data is only defined in the GET

AVAILABLE CONTROLS (GACI).

In any error condition the caller should not use the DataBuffer as its
values are indeterminate.

DataBuffer

The buffer returned as part of the GDSV call is an array of
DiscreteValueData C-structs. This array of structures should explicitly
define all supported values for the requested Control ID. If both the SW

SMI REAL-TIME COMMUNICATIONS INTERFACE and the RUN-TIME

CONTROL OBJECTS are supported, then the array of supported values will
be shared between them.

It is not valid to return an empty buffer.

Table 9: GACI Return Value Definition

Intel Confidential 14 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

Field Name Definition

DataValue

This value will be sent as the input to both the SW SMI REAL-TIME

COMMUNICATIONS INTERFACE and the RUN-TIME CONTROL OBJECTS for
the associated DisplayValue.

DisplayValue

The value for the graphical user interface display which will be presented
to the end-user. Any precision that is applied to the DisplayValue is
described in the GET AVAILABLE CONTROLS (GACI) method with the
associated Control ID. This field is handled as a 2’s complement to
represent a negative value where necessary.

Table 10: DiscreteValueData Structure Definition

3.1.4.3 Get SMI Command Value (GSCV)

The GSCV object is a control detail object which evaluates to the SMI command that should be sent to the
appropriate SW SMI port for the platform. This is a custom value for each BIOS that designates which
value should be placed in the AL register prior to performing the SW SMI described in the SW SMI REAL-
TIME COMMUNICATIONS INTERFACE section of the document.

Syntax for Signature
Name (GSCV, 0xXX)

3.1.4.1 Get XMP Display Values (GXDV)

The GXDV object is a control detail object which retrieves the requested XMP profile’s settings and their
associated display values. This mechanism is only necessary if the platform supports XMP. It is an
optional method for implementation. However it is required to be implemented for XTU to support XMP.

Syntax for Signature
Method(GXDV, 1, NotSerialized, 0, PkgObj, IntObj)

Description
The purpose of this function is to query the BIOS about the memory frequency, timings, and voltages
associated with a specific XMP profile. All Memory settings that are supported by the platform must be
returned as part of the BIOS Settings Data Structure returned from the SMI call. This includes every
supported Control ID from the memory section of TABLE 30: NUMERICALLY SORTED CONTROL ID

ENUMERATIONS as well as the Memory Voltage and optionally the System Agent Voltage from the voltage
section of the enumeration. All of this data must be returned by this method.

Arguments

The single input to the GXDV method is the XMP Profile to be queried, Profile 1 or Profile 2.

Parameter Definitions

Field Name Definition

ProfileNumber

(Arg0)

This is a value which represents either Profile 1 or Profile 2.

1 – Retrieve values for Profile 1

2 – Retrieve values for Profile 2

All other inputs – Invalid and should return an error.

Intel Confidential 15 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

Table 11: GXDV Argument Definition

Result

A package object is returned with the following definition:

Name (RETV, Package()

{ // Field Name // Field Type

 ErrorCode // DWORD

 DataBuffer // XmpDisplayValue[]

})

 The resultant buffer is defined as an array of packed XmpDisplayValue C-structs.

struct XmpDisplayValue

{

 WORD ControlID

 BYTE Reserved

 BYTE Precision

 DWORD DisplayValue

 }

 Result Parameter Definitions

Field Name Definition

ErrorCode

Defined as:

 Success == 0

 Invalid Input Argument == 1

XMP Not Supported == 2

 Unexpected Error == 0xFFFFFFFF

Any value that is returned which is not equal to 0 is considered a failure.
A value of 1 describes an invalid input. This is generally because a
request for Profiles other than 1 & 2.

In any error condition the caller should not use the DataBuffer as its
values are indeterminate.

DataBuffer

The buffer returned as part of the GXDV call is an array of
XmpDisplayValue C-structs. This array of structures should explicitly
define all Control IDs and their associated Display Values that will be
altered if the requested XMP Profile is applied to the system.

It is not valid to return an empty buffer.

Table 12: GXDV Return Value Definition

Field Name Definition

ControlID
This field describes a Control ID that is manipulated if the currently
queried XMP Profile is selected to be applied to the system.

Reserved This field must be set to 00h.

Intel Confidential 16 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

Field Name Definition

Precision

This field is used to allow the BIOS to represent non-whole numbers as
fixed-point values. The precision specified will be applied to the value in
the DisplayValue field of this structure. See the following examples:

DisplayValue: 125
Precision: 2
XTU UI: 1.25

DisplayValue: 40
Precision: 0
XTU UI: 40

DisplayValue: 400
Precision: 1
XTU UI: 40.0

DisplayValue
The value for the graphical user interface display which will be presented
to the end-user.

Table 13: XmpDisplayValue Structure Definition

3.1.5 Run-Time Control Objects

The ACPI Control objects provide access to various voltage, clock, and other platform specific controls that are
implemented by the BIOS on a specific platform. These objects can be accessed from the OS level to provide
applications with access to manipulating certain types of hardware on the platform. This control is accomplished by
defining and implementing ACPI device objects in the platform BIOS according to this specification and accessing
them through the XTU software.

3.1.5.1 Control Device Read (CDRD)

The CDRD object is a control method which is implemented by the BIOS that allows for reading the
current value of an object which is controllable in real-time. This object is only required to be implemented
when supporting real-time control for platform specific hardware. Handlers to support Control IDs for
Intel silicon based features are not required.

An example implementation can be found in Section 3.1.7.

Syntax for Signature
Method(CDRD, 1, Serialized, 0, PkgObj, IntObj)

Description

The purpose of this method is to be able to read the current value of the hardware via a BIOS implemented
custom interface. This method will always provide the data necessary to determine the current value of the
actual platform hardware.

Arguments
The CDRD control method has one input argument. The sole input is the Control ID that should be read.

Intel Confidential 17 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

 Parameter Definitions

Field Name Definition

ControlID

(Arg0)
This is a value which represents a specified control (see ENUMERATIONS).

Table 14: CDRD Argument Definition

Result

A package object is returned with the following definition:

Name (RETV, Package()

{ // Field Name // Field Type

 ErrorCode, // DWORD

 DataValue // DWORD

})

 Result Parameter Definitions

Field Name Definition

ErrorCode

Defined as:

 Success == 0

 Unexpected Error == 0xFFFFFFFF

Any value that is returned which is not equal to 0 is considered a failure to
read the device. In this case, the value of the DataValue field is defined
as indeterminate and the caller should not use that data.

DataValue

The current value of the hardware as reported by the BIOS. The meaning
of these values is defined by either the GET AVAILABLE CONTROLS

(GACI) or the DISCRETE SUPPORTED VALUES (GDSV) method.

Table 15: CDRD Return Value Definition

3.1.5.2 Control Device Write (CDWR)

The CDWR object is a control method which is implemented by the BIOS that allows for writing to an
object which is controllable in real-time. This object is only required to be implemented when supporting
real-time control for platform specific hardware. Handlers to support Control IDs for Intel silicon based
features are not required. The detailed list is in the following table.

Subsystem Control IDs Definition

Processor 2Eh Additional Turbo Mode CPU Voltage

2Fh Short Window Package Total Design Power Limit

30h Extended Window Package Total Design Power Limit

43h Short Window Time (Sandy Bridge-E only)

42h Extended Window Time

Intel Confidential 18 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

33h IA Core Total Design Power Limit

36h Internal Graphics Core Total Design Power Limit

3Fh Runtime Turbo Override

Clocking 01h Reference Clock Frequency (Cougar Point Only)

Table 16: Control Ids with Runtime Support Built-In

An example can be found in Section 3.1.7.

Syntax for Signature
Method(CDWR, 2, Serialized, 0, IntObj, {IntObj, IntObj})

Description

The purpose of this method is to be able to write the requested value to the hardware via a BIOS
implemented custom interface. This method is responsible to write the requested value to hardware and
return a success or fail status to the caller.

Arguments

The CDWR control method has two input arguments. Both arguments are DWORD values. The first
argument is the Control ID. The second argument is the value to be written to the hardware.

Parameter Definitions

Field Name Definition

ControlID

(Arg0)
This is a value which represents a specified control (see ENUMERATIONS).

DataValue

(Arg1)

The value that is being requested to be written to hardware. It will be a
value the XTU software has retrieved from either the GET AVAILABLE

CONTROLS (GACI) or the DISCRETE SUPPORTED VALUES (GDSV)
methods.

Table 17: CDWR Argument Definition

Result
Name (RETV, ErrorCode)

 Result Parameter Definitions

Field Name Definition

ErrorCode

Defined as:

 Success == 0

Non-real Time Control ID requested = 1

 Unexpected Error == 0xFFFFFFFF

Any value that is returned which is not equal to 0 is considered a failure to
write to the device.

Intel Confidential 19 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

3.1.6 Monitor-Only Objects

The Monitor-Only objects provide access to various temperature, voltage, and fan data implemented by BIOS on a
particular platform through an application level mechanism. This is accomplished by defining and implementing the
methods described in this section within the platform BIOS and using software (i.e. Intel® Extreme Tuning Utility)
to view the thermal data.

3.1.6.1 Temperature Sensor Data Dump (TSDD)

The TSDD method evaluates to a packaged list of information about available temperature sensors and the
current absolute temperature values. This object is required to be implemented when using any
Performance Tuning & Monitoring ACPI Devices.

Typical temperature values returned by this object would include processor diode temperature (if available
and accessible). Other platform temperature sensors like voltage regulator, memory, or notebook skin may
also be returned.

Syntax for Signature
Method(TSDD, 0, NotSerialized, 0, PkgObject)

Description

The purpose of this method is to be able to get the current state of all temperatures on the platform which
have been provided by the platform.

Arguments

No input parameters.

Result
Name (RETV, Package()

{ //Field Name //Field Type

 UsageId1, // DWORD

 UniqueId1, // DWORD

 CurrentValue1 // DWORD

 Reserved1, // DWORD

 …

 …

 UsageIdN, // DWORD

 UniqueIdN, // DWORD

 CurrentValueN, // DWORD

 ReservedN // DWORD

})

NOTE: If no temperature sensors are present on the system, then a null package must be returned for the
TSDD object.

 Result Parameter Definitions

Field Name Definition

UsageId

Indicates the type of device the temperature value is reported for. The
value must be one of the values from TABLE 31: TEMPERATURE (TSDD)

USAGE ENUMERATION.

UniqueId
The UniqueId value reported by BIOS in the TSDD package must
uniquely identify a device within the Performance Tuning & Monitoring

Intel Confidential 20 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

Field Name Definition

ACPI Device scope (this includes VSDD and FSDD devices as well).

CurrentValue

The units of the current absolute temperature value returned must be 10ths
of a Kelvin. For example, if the temperature is 30 degrees Celsius then the
value returned must be (2732 + 300) = 3032.

Reserved The value of the reserved field is 0000h.

Table 18: TSDD Package Parameter Definitions

3.1.6.2 Voltage Sensor Data Dump (VSDD)

The VSDD method evaluates to a packaged list of information about available voltage sensors and the
current voltage values. This object is required when using any Performance Tuning & Monitoring ACPI
Devices.

Typical voltage values returned by this object would include CPU core, Uncore, Memory, and/or PCH.

Syntax for Signature
Method(VSDD, 0, NotSerialized, 0, PkgObject)

Description

The purpose of this method is to be able to get the current state of all voltages on the platform which have
been provided by the platform.

Arguments

No input parameters.

Result
Name (VLTV, Package()

{ //Field Name //Field Type

 UsageId1, // DWORD

 UniqueId1, // DWORD

 CurrentValue1 // DWORD

 Reserved1, // DWORD

 …

 …

 UsageIdN, // DWORD

 UniqueIdN, // DWORD

 CurrentValueN, // DWORD

 ReservedN // DWORD

})

NOTE: If no voltages are present on the system, then a null package must be returned for the VSDD object.

 Result Parameter Definitions

Field Name Definition

UsageId

Indicates the type of device the voltage value is reported for. UsageId for
VSDD package must be one of the values from TABLE 32: VOLTAGE

(VSDD) USAGE ENUMERATION.

Intel Confidential 21 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

Field Name Definition

UniqueId

The UniqueId value reported by BIOS in the VSDD package must
uniquely identify a device within the Performance Tuning & Monitoring
ACPI Device scope (this includes TSDD and FSDD devices as well).

CurrentValue
The unit of the current voltage returned must be millivolts (mV). E.g., if
the Voltage is 1.1 V, then the value returned must be 1100.

Reserved The value of the reserved field is 0000h.

Table 19: VSDD Package Parameter Definitions

3.1.6.3 Fan Sensor Data Dump (FSDD)

The FSDD method evaluates to a packaged list of information about available fan sensors and the current
fan speed values. This object is required when using any Performance Tuning & Monitoring ACPI
Devices.

Syntax for Signature
Method(FSDD, 0, NotSerialized, 0, PkgObject)

Description
The purpose of this method is to be able to get the current speed of all fans on the platform which have
been provided by the platform.

Arguments

No input parameters.

Result
Name (RPMV, Package()

{ //Field Name //Field Type

 UsageId1, // DWORD

 UniqueId1, // DWORD

 CurrentValue1, // DWORD

 Reserved1, // DWORD

 …

 …

 UsageIdN, // DWORD

 UniqueIdN, // DWORD

 CurrentValueN, // DWORD

 ReservedN // DWORD

})

NOTE: If no fan sensors are present on the system, then a null package must be returned.

 Result Parameter Definitions

Field Name Definition

UsageId

Indicates the type of device the fan speed value is reported for. UsageId
for FSDD package must be one of the values from TABLE 33: FAN

(FSDD) USAGE ENUMERATION.

Intel Confidential 22 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

Field Name Definition

UniqueId

The UniqueId value reported by BIOS in the FSDD package must
uniquely identify a device tithing the Performance Tuning & Monitoring
ACPI Device scope (this includes TSDD and VSDD devices as well).

CurrentValue

The unit of the current fan speed returned must be rotations per minute
(RPM). E.g., if the speed is 2500 RPM, then the value returned must be
2500.

Reserved The value of the reserved field is 0000h.

Table 20: FSDD Package Parameter Definitions

3.1.6.4 Sensor Data Sampling Period (SDSP)

This optional object evaluates to an integer to specify the sampling period to evaluate TSDD, VSDD and
FSDD methods that would guarantee fresh data for temperature, voltage and fan speed values. The unit of
sampling is in 10ths of seconds.

For example, in a platform that has one temperature sensor, one voltage sensor and one fan speed sensor, if
hardware implementation takes 100 ms (0.1 s), 200 ms (0.2 s) and 500 ms (0.5 s) to fetch temperature,
voltage and fan speed values, then the SDSP must return 5.

When this method is present, the OS/application level software should honor the value returned by this
object. The OS/Application level software can evaluate the TSDD, VSDD and FSDD objects at a sampling
rate of the period specified by this object or above.

Syntax for Signature
Method(SDSP, 0, NotSerialized, 0, IntObject)

Description

The purpose of this method is to get the recommended sampling period for the platform temperatures,
voltages, and fans.

Arguments

No input parameters.

Result
Name(RETV, SamplingPeriod)

Result Parameter Definitions

Field Name Definition

SamplingPeriod

Indicates the minimum sampling period that the application can use and
expect to receive updated information from the platform for the TSDD,
FSDD, and VSDD methods.

Table 21: SDSP Result Parameter Definitions

Intel Confidential 23 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

3.1.7 Example Implementation

First is the definition of BIOS POST time C-struct definitions and initialization.

//

// GACI structure definition

//

typedef struct ControlIdData

{

 UINT32 ControlId;

 UINT16 NumberOfValues;

 UINT8 Precision;

 UINT8 Flags;

 UINT32 DefaultDataValue;

 UINT32 MinDataValue;

 UINT32 MaxDataValue;

 UINT32 MinDisplayValue;

 UINT32 MaxDisplayValue;

} CONTROLID_DATA;

#DEFINE SUPPORTED_CONTROLID_COUNT 6 // Count of 6 is an example

typedef struct CtlBufer

{

CONTROLID_DATA CtrlID[SUPPORTED_CONTROLID_COUNT];

} CONTROLID_BUFF;

STATUS CreateGaciBuffer (VOID)

{

.

.

.

CONTROLID_BUFF *CtlBuf;

AllocateMemory(EfiACPIMemoryNVS, sizeof(CONTROLID_BUFF), &CtlBuf);

CtlBuf->CtrlID[0].ControlId = 0x00;

CtlBuf->CtrlID[0].NumberOfValues = MaxNonTurboRatio - MaxEffRatio+1;

CtlBuf->CtrlID[0].Precision = 0x00;

CtlBuf->CtrlID[0].Flags = 0x00;

CtlBuf->CtrlID[0].DefaultDataValue = FlexRatioOverrideDefault;

CtlBuf->CtrlID[0].MinDataValue = MaxEfficiencyRatio;

CtlBuf->CtrlID[0].MaxDataValue = MaxNonTurboRatio;

CtlBuf->CtrlID[0].MinDisplayValue = MaxEfficiencyRatio;

CtlBuf->CtrlID[0].MaxDisplayValue = MaxNonTurboRatio;

CtlBuf->CtrlID[1].ControlId = BIOS_DEVICE_HOST_CLK_FREQ;

CtlBuf->CtrlID[1].NumberOfValues = BclkMaxValue – BclkMinValue + 1;

CtlBuf->CtrlID[1].Precision = 0x02;

CtlBuf->CtrlID[1].Flags = 0x00;

CtlBuf->CtrlID[1].DefaultDataValue = 10000;

Intel Confidential 24 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

CtlBuf->CtrlID[1].MinDataValue = BclkMinValue;

CtlBuf->CtrlID[1].MaxDataValue = BclkMaxValue;

CtlBuf->CtrlID[1].MinDisplayValue = BclkMinValue;

CtlBuf->CtrlID[1].MaxDisplayValue = BclkMaxValue;

CtlBuf->CtrlID[3].ControlId = BIOS_DEVICE_tCL;

CtlBuf->CtrlID[3].NumberOfValues = tCL_MAX - tCL_MIN +1;

CtlBuf->CtrlID[3].Precision = 0x00;

CtlBuf->CtrlID[3].Flags = MIN_SETTING_LOW_PERFORMANCE;

CtlBuf->CtrlID[3].DefaultDataValue = tCLDefault;

CtlBuf->CtrlID[3].MinDataValue = tCL_MIN;

CtlBuf->CtrlID[3].MaxDataValue = tCL_MAX;

CtlBuf->CtrlID[3].MinDisplayValue = tCL_MIN;

CtlBuf->CtrlID[3].MaxDisplayValue = tCL_MAX;

CtlBuf->CtrlID[4].ControlId = BIOS_DEVICE_tRCD;

CtlBuf->CtrlID[4].NumberOfValues = tRCD_MAX - tRCD_MIN + 1;

CtlBuf->CtrlID[4].Precision = 0x0;

CtlBuf->CtrlID[4].Flags = MIN_SETTING_LOW_PERFORMANCE;

CtlBuf->CtrlID[4].DefaultDataValue = tRCDDefault;

CtlBuf->CtrlID[4].MinDataValue = tRCD_MIN;

CtlBuf->CtrlID[4].MaxDataValue = tRCD_MAX;

CtlBuf->CtrlID[4].MinDisplayValue = tRCD_MIN;

CtlBuf->CtrlID[4].MaxDisplayValue = tRCD_MAX;

CtlBuf->CtrlID[5].ControlId = BIOS_DEVICE_tRP;

CtlBuf->CtrlID[5].NumberOfValues = tRP_MAX - tRP_MIN + 1;

CtlBuf->CtrlID[5].Precision = 0x00;

CtlBuf->CtrlID[5].Flags = MIN_SETTING_LOW_PERFORMANCE;

CtlBuf->CtrlID[5].DefaultDataValue = tRPDefault;

CtlBuf->CtrlID[5].MinDataValue = tRP_MIN;

CtlBuf->CtrlID[5].MaxDataValue = tRP_MAX;

CtlBuf->CtrlID[5].MinDisplayValue = tRP_MIN;

CtlBuf->CtrlID[5].MaxDisplayValue = tRP_MAX;

.

.

.

}

The example below illustrates a sample implementation of the Performance Tuning & Monitoring ACPI device in
ASL.

//

// Define the XTU Device as a dynamically loadable SSDT or within the

// DSDT under the _SB scope

//

Scope (_SB)

{

 // First declare external variables for items that need to be

Intel Confidential 25 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

// fixed up during POST

// The XTUB structure should point at the CtlBuf which was

// allocated and populated during POST (see previous C-struct

// example).

External(XTUB)

OperationRegion (XNVS, SystemMemory, XTUB, 0x2000)

Field (XNVS, ByteAcc, NoLock, Preserve)

{

XBUF, 0x16c0 // GACI Size specific to implementation

 }

 // Note: When declaring the device, any name unique to the

// platform implementation can be used (i.e. PTMD as below)

Device(PTMD)

{

Name(_HID, EISAID("INT3394"))

Name(_CID, EISAID("PNP0C02"))

Name(IVER, 0x00010000)

Name(GSCV, 0x10000)

Method(GACI, 0x0, NotSerialized, 0, PkgObj)

{

Name(RPKG, Package(0x2){}) // Return package

Store(0x00,Index(RPKG, 0)) // ErrorCode

Store(XBUF, Index(RPKG, 1)) // buffer

Return(RPKG)

}

Method(GDSV, 0x1, Serialized)

{

 // The next line represents checking for specifically

 // supported ControlIDs. Typically this would be a

 // Case or If/ElseIf statement if multiple ControlIDs

 // were supported. The default condition should be

 // an error code where the assumption is that

 // Discrete values are not supported (or necessary)

// for the requested ControlID.

If(LEqual(Arg0, 0x07))

{

Return(Package(0x2)

{

Zero, //Error Code

Buffer()

{

0x07,Zero,Zero,Zero,//Data Value 1

0x07,Zero,Zero,Zero,//Display Value 1

0x09,Zero,Zero,Zero,//Data Value 2

0x09,Zero,Zero,Zero //Display Value 2

Intel Confidential 26 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

0x0e,Zero,Zero,Zero,//Data Value 3

0x0e,Zero,Zero,Zero //Display Value 3

}

})

}

Return(Package(0x1)

{

0x01 //Error code for continuous settings

})

}

// This method is the Control Device Read

 // Arguments by number:

 // 0 - Method Name

 // 1 - Number of CDRD input parameters

 // 2 - Mutex Requirements (See the ACPI Spec)

 // 3 - SyncLevel (See the ACPI Spec)

 // 4 - Return Type

 // 5 - List of Input Types (1 Integer)

 Method(CDRD, 1, Serialized, 0, PkgObj, IntObj)

{

Return(Package(0x2)

{

Zero, //Error Code

Zero //Current Value

 })

}

 // This method is the Control Device Write

 // Arguments by number:

 // 0 - Method Name

 // 1 - Number of CDWR input parameters

 // 2 - Mutex Requirements (See the ACPI Spec)

 // 3 - SyncLevel (See the ACPI Spec)

 // 4 - Return Type

 // 5 - List of Input Types (2 Integers)

 Method(CDWR, 0x2, Serialized, 0, IntObj, {IntObj, IntObj})

{

Return(Zero) //Error Code

}

 Name(TMPV, Package()

 {

 //UsageId //UniqueId //Value //Reserved

 0x01, 0x0002, 0, 0,

 0x03 0x0003, 0, 0,

 0x06 0x0004, 0, 0

 })

 Name(VLTV, Package()

 {

Intel Confidential 27 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

 //UsageId //UniqueId //Value //Reserved

 0x01, 0x0005, 0, 0

 0x04 0x0006, 0, 0

 0x06 0x0007, 0, 0

 0x10 0x0008, 0, 0

 })

 Name(RPMV, Package()

 {

 //UsageId //UniqueId //Value //Reserved

 0x01, 0x0009, 0, 0

 0x04 0x000A, 0, 0

 0x0C 0x000B, 0, 0

 })

 Method(TSDD)

 {

 Name(TMPC, 0) // Current Temperature Local Variable

 // Implement temperature determination code here

 // E.g. If embedded controller firmware implements a

// command to fetch various temperature values,

// implement code to issue the command. Populate the

// TMPV package with the right temperature values

 …

 …

 // Update CurrentValue1 in TMPV package with

 // the current Temperature

 Store(TMPC, Index(TMPV, 2))

 …

 …

 // Update CurrentValue2 in TMPV package with

 // the current Temperature

 Store(TMPC, Index(TMPV, 6))

 Return(TMPV)

 }

 Method(VSDD)

 {

 Name(VLTC, 0) // Current volts Local Variable

 // Implement voltage determination code here

 // E.g. If embedded controller firmware implements a

 // command to fetch various voltage values, implement

 // code to issue the command. Populate the LVTV

 // package with the right voltage values

 …

 // Update CurrentValue1 in VLTV package with

 // the current Voltage

 Store(VLTC, Index(VLTV, 2))

 …

 // Update CurrentValue2 in VLTV package with

Intel Confidential 28 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

 // the current Voltage

 Store(VLTC, Index(VLTV, 6))

 Return(VLTV)

 }

 Method(FSDD)

 {

 Name(RPMC, 0) // Current RPM Local Variable

 // Implement Fan speed RPM determination code here

 // E.g. If embedded controller firmware implements a

 // command to fetch various RPM values, implement

 // code to issue the command. Populate the RPMV

 // package with the current fan speed

 …

 // Update CurrentValue1 in RPMV package with

 // the current Fan Speed

 Store(RPMC, Index(RPMV, 2))

 …

 // Update CurrentValue2 in RPMV package with

 // the current Fan Speed

 Store(RPMC, Index(RPMV, 6))

 Return(RPMV)

 }

 Method(SDSP)

 {

 // Fastest sampling period supported

// Expressed in tenths of a second

 Return(10)

 }

 } // End of PTMD Device

}

3.2 Watchdog Timer

The only watchdog timer (WDT) implementation that is supported by this revision of XTU is the WDT that is
integrated into the PCH. In order to support the PCH-based Watchdog Timer which is present on Cougar Point-
based platforms and newer, XTU BIOS support for the timer requires integration of the chipset reference code. This
documentation is provided separately from the XTU BIOS Interface Specification and is available from your
technical BIOS support contact at Intel. Aside from the integration of the reference code, no XTU-specific BIOS
support code is necessary.

Intel Confidential 29 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

3.3 SW SMI Real-Time Communications Interface

3.3.1 Overview

The main purpose of the SW SMI Real-Time Communications Interface is to read and write BIOS settings. This
interface uses values that are obtained via data retrieved from the GET AVAILABLE CONTROLS (GACI) method
described earlier in the document. These functions can be accessed in the Operating System via writes of the SW
SMI Command Value to the SW SMI Port with the appropriate register settings which are described below.

3.3.2 BIOS Settings Structure

This structure defines the data that will be described by reads and writes to the BIOS SW SMI command defined by
this specification. The BIOS is required to check the signature field and the length Field prior to writing any data to
the buffer provided by the calling application. If either the signature or the length fields are not correct the BIOS
must respond accordingly:

• If the signature field is correct, the current revision is supported, and the length field is sufficient, then fill
in all the data, update the length field, and return successful.

• If the signature is correct but either the length is not sufficient to return all data or the revision is not
supported, then fill in the correct length, major and minor revision fields and return the appropriate error or
warning code.

• If the signature is not correct and it is not recognized then do not write any data to the supplied buffer and
return an error.

Data Structure:

Offset Name Length Value

00h Signature DWORD ’$BD2’

04h Length DWORD Varies

08h Major Revision WORD 2

0Ah Minor Revision WORD 0

0Ch BIOS Setting Count DWORD Varies

10h BIOS Setting Entry Array Varies Varies

Table 22: BIOS Settings Data Structure

Offset Name Length Value

00h Control ID DWORD Varies

04h Data Value DWORD Varies

Table 23: BIOS Setting Entry

Intel Confidential 30 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

3.3.3 Functions

3.3.3.1 Read BIOS Settings

This function reads the value for all BIOS settings that are present on the interface and places them into a
memory location pointed to by the caller. As stated in the overview, in order to access this function, XTU
will write the SW SMI Command Value to the SW SMI Port. Prior to this the registers must be setup as
described in the command data section. The BIOS Settings Data Structure on a read must contain a list of
all values supported by the platform.

Command Data:

Note: BIOS must be able to address up to 4GB of physical memory from SMM to support this function.

Use the data structure defined in Table 22: BIOS Settings Data Structure.

Register Value Definition

ECX 00h Read BIOS Settings Command

EBX Varies 32-bit Physical Memory Data Location of the location to be
used for the returned BIOS Settings Data Structure (See
Table 22)

 Table 24: Read BIOS Settings Command, Register Setup

3.3.3.2 Write BIOS Settings

This function writes all BIOS settings that are present on the interface based on the data contained in a
memory location pointed to by the caller. As stated in the overview, in order to access this function, XTU
will write the SW SMI Command Value to the SW SMI Port. Prior to the SMI invocation the registers
must be setup as described in the command data section. The BIOS Settings Data Structure on a write
command will only contain a list of values changed since the previous write.

Command Data:

Note: BIOS must be able to address up to 4GB of physical memory from SMM to support this function.

Use the data structure defined in Table 22: BIOS Settings Data Structure.

Register Value Definition

ECX 01h Write BIOS Settings Command

EBX Varies 32-bit Physical Memory Data Location of the location to be
used for the BIOS Settings Data Structure (See Table 22) to
be written.

Table 25: Write BIOS Settings Command, Register Setup

3.3.4 Return Values

This table contains a list of possible error codes that can be returned from the BIOS in the EBX register to indicate
the status of the last SMI call.

Intel Confidential 31 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

3.3.4.1 Error Codes

These codes define the return values that indicate a critical failure occurred during the SMI call. For all
critical error conditions the high bit of the DWORD will be set.

NOTE: For all Error Codes considered critical errors the high bit of the DWORD returned must be set.

Value Definition

0x00 Successful

0x8001 Invalid Signature supplied by caller

0x8002 Table length is too small, valid header data returned

0x8003 Table length is too small, no header data returned

0x8004 Unknown Command in ECX

0x8006 Invalid SMI revision

0xFFFF Internal BIOS error - used for BIOS errors that cannot be generically classified. Use ECX to
return a value that will aid in debugging/explaining this return value in more detail. Any data
contained in ECX when this code is returned is a BIOS specific value and is not defined by this
specification.

Table 26: BIOS Settings Command Error Codes

3.3.4.2 Warning Codes

These codes define the return values that indicate some issue occurred with the call but the data was able to
be returned. Each warning may indicate that a subset of the full data set was returned.

Value Definition

0x0002 Table length is too large (non-critical error). A complete data set of the supported table will be
returned.

0x00FF Internal BIOS warning - used for BIOS warnings that cannot be generically classified. Use ECX
to return a value that will aid in debugging/explaining this return value in more detail. Any data
contained in ECX when this code is returned is a BIOS specific value and is not defined by this
specification.

Table 27: BIOS Settings Command Warning Codes

Intel Confidential 32 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

4 Control Implementation Guidance

4.1 Graphics Turbo Ratio Limit

The graphics turbo ratio limit (control 3Bh) represents the ratio of the processor graphics multiplier with respect to
BCLK. While the hardware value of this control is generally stored in 50MHz step-sized values (as on Haswell
CPUs), the display value reported to XTU must be reported in 100MHz steps so that it is relative to the BCLK
value.

For example, for a graphics frequency value of 1150MHz, the data value read directly from hardware is 21 or 15h
but the display value must be reported to XTU as 11.5x.

4.2 Memory Clock Multiplier

The memory clock multiplier (control 49h) represents the ratio of the memory controller PLL reference clock to
BCLK. For example, for the (Panther Point default) frequency value of 133MHz, this multiplier value would be
133MHz / 100MHz = 1.33.

Note that, if supported by the platform, the memory clock multiplier control should be included with the Get XMP
Display Values (GXDV) ACPI Device Object for each supported XMP memory profile. Without this value, XTU is
unable to calculate the operating memory frequency for the corresponding XMP profile, since the DDR Multiplier
(control 13h) is relative to the memory controller frequency.

4.3 FIVR Voltage Controls

For each FIVR domain supported by the processor, XTU supports three controls:

• Voltage mode. An enumeration value that indicates whether the corresponding domain’s override voltage
should be applied in either “Static” or “PCU Adaptive” mode.

• Override voltage. A voltage value that is applied to the corresponding domain. Whether this voltage is
applied as a static or adaptive value is determined by the corresponding “Voltage mode” setting. For ideal
operation, the values allowed by this control should be a subset of those supported by the voltage override
field of the system OC mailbox.

• Voltage offset. A fixed offset value to be applied by the PCU to the final computed voltage value for the
given domain. This value corresponds to the “voltage offset” value provided to the OC mailbox. For ideal
operation, the values allowed by this control should be a subset of those supported by the voltage offset
field of the system OC mailbox.

Note that XTU expects that the Max OC ratio value programmed to the OC mailbox for the IA domain will match
the value of the 1-Active Core Ratio Limit (1Dh) control value. If these do not match, XTU will use the lower of
the two values.

Intel Confidential 33 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

4.4 PEG/DMI Ratio

The PEG/DMI Ratio (control 5Ah) represents the ratio of the PEG and DMI bus frequency to BCLK. For example,
given an operating PEG/DMI frequency of 100MHz and a BCLK frequency of 125MHz, this multiplier value would
be 100MHz / 125MHz = 0.8. Thus, one or more of the following ratios must be supported: 1.0 / 0.8 / 0.6 / 0.4.

4.5 Filter PLL Frequency

The Filter PLL implemented on Shark Bay platforms can be configured in one of two ways. Either the frequency is
left to run at its default value, which may be 1600MHz or 3200MHz, or it is forced to operate at 1600MHz. To
reflect this design, this control should be implemented as a dynamic control using a numeric value. The control will
thus support the reserved value for “Automatic” mode, which corresponds to the 1600/3200 default previously
described.

4.6 OC Mailbox Enable/Disable Toggle Controls

The following controls are implemented as single bit positions within the OC Mailbox interface.

• Dynamic SVID Control

• FIVR Faults

• FIVR Efficiency Management

Each of these controls are represented in the XTU user interface with a value of “Enabled” or “Disabled” based on
the display value (0h/1h) presented within the XTU ACPI interface. This value, however, is the inverse of the value
used by the corresponding bitfield within the OC Mailbox. The following table summarizes the relationship
between XTU display value, ACPI value, and OC mailbox bitfield value for all of these controls.

Table 28: OC Mailbox Enable/Disable Toggle Controls

XTU
Display
Value

ACPI
Display
Value

OC Mailbox
Bitfield
Value

Enabled 01h 00h

Disabled 00h 01h

Intel Confidential 34 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

Appendix A - Enumerations
The following tables represent all of the Control IDs supported by the XTU application. The first table has the
Control IDs organized by subsystem for easy ability to find the appropriate devices. A separate table follows which
lists all Control IDs numerically (TABLE 30: NUMERICALLY SORTED CONTROL ID ENUMERATIONS).

Table 29: Usage Sorted Control ID Enumerations

Subsystem Control IDs Definition Type Units

Processor 00h Max Non-Turbo Processor Multiplier (also known as Flex Ratio) Numeric None

 1Ah Turbo Mode Enable En/Dis None

 1Dh 1-Active Core Ratio Limit Numeric None

 1Eh 2-Active Core Ratio Limit Numeric None

 1Fh 3-Active Core Ratio Limit Numeric None

 20h 4-Active Core Ratio Limit Numeric None

 2Ah 5-Active Core Ratio Limit Numeric None

 2Bh 6-Active Core Ratio Limit Numeric None

 29h Enhanced Intel® Speedstep Technology Enable En/Dis None

 2Eh Additional Turbo Mode CPU Voltage (Pre-Haswell Only) Numeric mV

 2Fh Short Window Package Total Design Power Limit Numeric Watts

 30h Extended Window Package Total Design Power Limit Numeric Watts

 43h Short Window Time (Sandy Bridge-E only) Numeric Seconds

 42h Extended Window Time Numeric Seconds

 31h Short Window Package Total Design Power Enable En/Dis None

 32h Package Total Design Power Lock Enable En/Dis None

 33h IA Core Total Design Power Limit Numeric Watts

 34h IA Core Total Design Power Enable En/Dis None

 35h IA Core Total Design Power Lock Enable En/Dis None

 36h Internal Graphics Core Total Design Power Limit Numeric Watts

 37h Internal Graphics Core Total Design Power Enable En/Dis None

 38h Internal Graphics Core Total Design Power Lock Enable En/Dis None

 39h IA Core Current Maximum Numeric Amps

 3Ah Internal Graphics Core Current Maximum Numeric Amps

 3Bh Graphics Turbo Ratio Limit Numeric None

Intel Confidential 35 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

 3Ch Additional Turbo Mode Graphics Core Voltage (Pre-Haswell Only) Numeric mV

 3Fh Runtime Turbo Override Numeric None

 41h Internal PLL Overvoltage Enable En/Dis None

 46h Vboot Voltage (Sandy Bridge-E Only) Numeric Volts

 47h Runtime Turbo Override Enable (Sandy Bridge-E Only) En/Dis None

 4Ch Ring Ratio (Haswell Only) Numeric None

 50h Overclocking Enable En/Dis None

 54h Package Current Limit (Haswell Only) Numeric Amps

Clocking 01h Reference Clock Frequency Numeric MHz

 45h Reference Clock Ratio (Sandy Bridge-E Only) Numeric None

 4Ah Filter PLL Frequency Numeric MHz

 5Ah PEG/DMI Ratio Numeric None

Voltage

58h IA Core Voltage Mode (Haswell Only)

Enumeration Definition:

• 0 – Adaptive

• 1 – Static

Enum None

 02h CPU Voltage Override Numeric Volts

 22h Dynamic CPU Voltage Offset Numeric mV

 05h Memory Voltage Numeric Volts

 44h Secondary Memory VR Voltage (Sandy Bridge-E Only) Numeric Volts

 25h System Agent Voltage Override Numeric Volts

 55h System Agent Voltage Offset (Haswell Only) Numeric mV

 26h PCH Voltage Numeric Volts

 52h Graphics Core Voltage Mode (Haswell Only)

Enumeration Definition:

• 0 – Adaptive

• 1 – Static

Enum None

 51h Graphics Core Voltage Override (Haswell Only) Numeric Volts

 53h Graphics Core Voltage Offset (Haswell Only) Numeric mV

 3Dh CPU PLL Voltage Numeric Volts

 3Eh CPU IO Voltage Numeric Volts

 46h Vboot Voltage (Sandy Bridge-E Only) Numeric Volts

 4Bh Dynamic SVID Control (Haswell Only) En/Dis None

Intel Confidential 36 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

 4Eh Ring Voltage Mode (Haswell Only)

Enumeration Definition:

• 0 – Adaptive

• 1 – Static

Enum None

 4Dh Ring Voltage Override (Haswell Only) Numeric Volts

 4Fh Ring Voltage Offset (Haswell Only) Numeric mV

 57h FIVR Efficiency Management Enable (Haswell Only) En/Dis None

 56h FIVR Fault Enable (Haswell Only) En/Dis None

 59h SVID Voltage Override (Haswell Only) Numeric V

 5Bh I/O Analog Voltage Offset (Haswell Only) Numeric mV

 5Ch I/O Digital Voltage Offset (Haswell Only) Numeric mV

Memory

13h DDR Multiplier
Numeric None

 49h Memory Clock Multiplier (Ivy Bridge and Haswell Only) Numeric None

 07h CAS Latency (tCL) Numeric Clocks

 08h Row Address to Column Address Delay (tRCD) Numeric Clocks

 09h Row Precharge Time (tRP) Numeric Clocks

 0Ah Row Active Time (tRAS) Numeric Clocks

 0Bh Write Recovery Time (tWR) Numeric Clocks

 15h Minimum Refresh Recovery Time (tRFC) Numeric Clocks

 16h Row Active to Row Active delay (tRRD) Numeric Clocks

 17h Internal Write to Read Command Delay (tWTR) Numeric Clocks

 18h System Command Rate Mode Numeric None

 19h Read to Precharge delay (tRTP) Numeric Clocks

 27h Row Cycle Time (tRC) Numeric Clocks

 28h Four Active Window Delay (tFAW) Numeric Clocks

 2Ch Average Periodic Refresh Interval (tREFI) Numeric Clocks

 2Dh Minimum CAS Write Latency Time (tCWL) Numeric Clocks

 40h XMP Profile Selection

Enumeration Definition:

• 0 – Default SPD Profile

• 1 – Custom Timing Profile

• 2 – XMP Profile 13 – XMP Profile 2

Enum Profile

 49h Memory Clock Multiplier (Ivy Bridge and Haswell Only) Numeric None

Intel Confidential 37 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

Table 30: Numerically Sorted Control ID Enumerations

Control IDs Definition

00h Max Non-Turbo Processor Multiplier (also known as Flex Ratio)

01h Reference Clock Frequency

02h CPU Voltage Override

05h Memory Voltage

07h CAS Latency (tCL)

08h Row Address to Column Address Delay (tRCD)

09h Row Precharge Time (tRP)

0Ah Row Active Time (tRAS)

0Bh Write Recovery Time (tWR)

0Dh PCI Express Frequency

0Eh PCI Frequency

13h DDR Multiplier

15h Minimum Refresh Recovery Time (tRFC)

16h Row Active to Row Active delay (tRRD)

17h Internal Write to Read Command Delay (tWTR)

18h System Command Rate Mode

19h Read to Precharge delay (tRTP)

1Ah Turbo Boost Technology Enable

1Dh 1-Active Core Ratio Limit

1Eh 2-Active Core Ratio Limit

1Fh 3-Active Core Ratio Limit

20h 4-Active Core Ratio Limit

22h CPU Voltage Offset

25h System Agent Voltage Override

26h PCH Voltage

27h Row Cycle Time (tRC)

28h Four Active Window Delay (tFAW)

29h Enhanced Intel® Speedstep Technology Enable/Disable

2Ah 5-Active Core Ratio Limit

2Bh 6-Active Core Ratio Limit

Intel Confidential 38 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

Control IDs Definition

2Ch Average Periodic Refresh Interval (tREFI)

2Dh Minimum CAS Write Latency Time (tCWL)

2Eh Max Turbo Mode CPU Voltage

2Fh Short Window Package Total Design Power Limit

30h Extended Window Package Total Design Power Limit

31h Short Window Package Total Design Power Enable

32h Package Total Design Power Lock Enable

33h IA Core Total Design Power Limit

34h IA Core Total Design Power Enable

35h IA Core Total Design Power Lock Enable

36h Internal Graphics Core Total Design Power Limit

37h Internal Graphics Core Total Design Power Enable

38h Internal Graphics Core Total Design Power Lock Enable

39h IA Core Current Maximum

3Ah Internal Graphics Core Current Maximum

3Bh Graphics Turbo Ratio Limit

3Ch Additional Turbo Mode Graphics Core Voltage

3Dh CPU PLL Voltage

3Eh CPU IO Voltage

3Fh Runtime Turbo Override

40h XMP Profile Selection

41h Internal PLL Overvoltage Enable

42h Extended Time Window

43h Short Time Window (Sandy Bridge-E only)

44h Secondary Memory VR Voltage (Sandy Bridge-E and Haswell only)

45h Reference Clock Ratio (Sandy Bridge-E only)

46h Vboot Voltage (Sandy Bridge-E Only)

47h Runtime Turbo Override Enable (Sandy Bridge-E Only)

49h Memory Clock Multiplier (Ivy Bridge and Haswell Only)

4Ah Filter PLL Frequency (Haswell Only)

4Bh Dynamic SVID Control (Haswell Only)

Intel Confidential 39 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

Control IDs Definition

4Ch Ring Ratio (Haswell Only)

4Dh Ring Voltage Override (Haswell Only)

4Eh Ring Voltage Mode (Haswell Only)

4Fh Ring Voltage Offset (Haswell Only)

50h Overclocking Enable

51h Graphics Core Voltage Override (Haswell Only)

52h Graphics Core Voltage Mode (Haswell Only)

53h Graphics Core Voltage Offset (Haswell Only)

54h Package Current Limit (Haswell Only)

55h System Agent Voltage Offset (Haswell Only)

56h FIVR Faults (Haswell Only)

57h FIVR Efficiency Management (Haswell Only)

58h IA Core Voltage Mode (Haswell Only)

59h SVID Voltage Override (Haswell Only)

5Ah PEG/DMI Ratio (Haswell Only)

5Bh I/O Analog Voltage Offset (Haswell Only)

5Ch I/O Digital Voltage Offset (Haswell Only)

Table 31: Temperature (TSDD) Usage enumeration

Enumeration Definition

00h Unknown

01h CPU Core

02h CPU Die

05h Voltage Regulator (VR)

06h DIMM

07h Motherboard Ambient

08h System Ambient

09h CPU Inlet

0Ah System Inlet

0Bh System Outlet

0Ch Power Supply

Intel Confidential 40 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

Enumeration Definition

0Dh Power Supply Inlet

0Eh Power Supply Outlet

0Fh Hard Drive

10h Graphics Processor Unit (GPU)

11h Laptop Skin

12h Optical Disk Drive

13h PCMCIA slot

14h PCH

15h Battery

Table 32: Voltage (VSDD) Usage enumeration

Enumeration Definition

00h Unknown

01h +12 Volt

02h -12 Volt

03h +5 Volt

04h +5 Volt Backup

05h -5 Volt

06h 3.3 Volt

07h 2.5 Volt

08h 1.5 Volt

09h CPU Voltage

0Dh Power Supply Inlet

0Fh +3.3 Volt Standby

10h CPU System Agent Voltage

11h 1.8 Volt

12h PCH Voltage

13h DDR Voltage

14h Battery

15h CPU IO Voltage

16h CPU PLL Voltage

Intel Confidential 41 Intel® Extreme Tuning Utility

 BIOS Interface Specification

 Rev. 0.51 - January 7, 2013

Table 33: Fan (FSDD) Usage enumeration

Enumeration Definition

00h Unknown/Other Usage

01h CPU

02h CPU System

04h Voltage Regulator

05h Chassis

06h Chassis Inlet

07h Chassis Outlet

08h Power Supply

09h Power Supply Inlet

0Ah Power Supply Outlet

0Bh Hard Disk

0Ch Graphics

0Dh Auxiliary

0Eh PCH

0Fh Battery

FFh Unused

